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where R 5 UD/v is the Reynolds number. Our purpose
is to present a finite difference method for solving (1a)–A numerical method for solving incompressible viscous flow

problems is introduced. This method uses the velocities and the (1b) in a domain D in two or three space dimensions, with
pressure as variables and is equally applicable to problems in two some appropriate conditions prescribed on the boundary
and three space dimensions. The principle of the method lies in the of D.
introduction of an artificial compressibility d into the equations of

The numerical solution of these equations presents ma-motion, in such a way that the final results do not depend on d. An
jor difficulties, due in part to the special role of the pressureapplication to thermal convection problems is presented. Q 1967

Academic Press in the equations and in part to the large amount of com-
puter time which such solution usually requires, making it
necessary to devise finite-difference schemes which allow

INTRODUCTION efficient computation. In two-dimensional problems the
pressure can be eliminated from the equations using the

The equations of motion of an incompressible viscous stream function and the vorticity, thus avoiding one of the
fluid are difficulties. If, however, a solution in three space dimen-

sions is desired, one is thrown back upon the primary
variables, the velocities, and the pressure. In what followstui 1 ujjui 5 2

1
r0

ip 1 v Dui 1 Fi , D ; O
j

2
j ,

a numerical procedure using these variables is presented;
it is equally applicable to two- and three-dimensional prob-juj 5 0,
lems and is believed to be computationally advantageous
even in the two-dimensional case. In the present paper wewhere ui are the velocity components, p is the pressure, Fi shall concentrate on the search for steady solutions of theare the components of the external force per unit mass, r0 equations; a related method for time-dependent problemsis the density, v is the kinematic viscosity, t is the time,
will be presented in a forthcoming paper.and the indices i, j refer to the space coordinates xi , xj , i,

Methods using the velocities and the pressure in two-j 5 1, 2, 3.
dimensional incompressible flow problems have previouslyLet d be some reference length, and U some reference
been devised. For example, in [4], Harlow and Welch fol-velocity; we write
low a procedure which appears quite natural—and may
indeed in their problem be quite appropriate. It runs as
follows: Taking the divergence of Eqs. (1a) one obtainsu9i 5

ui

U
, x9i 5

xi

d
, p9 5 S d

r0vUD p,
for the pressure an equation of the form

F 9i 5
vU
d 2 Fi , t9 5 S v

d 2D t
Dp 5 Q, D ; O 2

j , (2)

and drop the primes, obtaining the dimensionless equa-
where Q is a quadratic function of the velocities and, even-tions
tually, a function also of the external forces. Boundary
conditions for (2) can be obtained from (1a) applied attui 1 Rujjui 5 2ip 1 Dui 1 Fi , (1a)
the boundary. There remains, however, the task of ensur-

juj 5 0, (1b) ing that (1b) is satisfied. This is done by starting the calcula-
tion with velocity fields satisfying (1b), making sure that
(1b) is always satisfied at the boundary, and solving (2) atReprinted from Volume 2, Number 1, August 1967, pages 12–26.
every step so that (1b) remains satisfied as time is advanced.* This work was partially supported by AEC Contract No. AT(30-1)-

1480. An ingenious formulation of the finite difference form of
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Eq. (2) reduces considerably the arithmetic labor necessary It now remains to replace the system (3) or (39) by a
finite difference system, andto solve it.

In our opinion the main shortcoming of this procedure (a) show that the finite difference approximation to
lies in its treatment of the boundary conditions. In order (3) is stable,
to satisfy the boundary conditions for (2) derived from

(b) demonstrate that the solution of the difference sys-(1a) and to satisfy (1b) near the boundary, it is necessary,
tem does indeed tend to a steady limit,in the finite-difference formulation, to assign values to the

(c) find a value of d and of any other parameter in thevelocity fields at virtual points outside the boundary, and
finite difference system such that the steady limit is reachedthis is a situation where no reflection principle is known
as fast as possible, and show that the resulting procedureto hold.
is indeed efficient.Were this procedure to be used only for the purpose of

obtaining an asymptotic steady solution (which was not (d) show that the steady limit of the difference system
the purpose in [4]), it would have additional shortcomings. does tend to a steady solution of (1) as the mesh width
It would be computationally wasteful to solve (2) at every tends to zero.
intermediate step, and moreover, in many problems, to

The author has not been able to carry out this programobtain an initial solution satisfying (1b) would be a major
analytically, forcing heavy reliance on the numerical evi-problem by itself.
dence.We shall now present a method for solving the system

It is not indispensable that the solution of the differential(1a)–(1b), which we believe to be free of these difficulties
system (3) tend to a steady limit, as long as the solutionand computationally more efficient. We shall not use
of the difference system does. It is, however, believed thatEq. (2).
the solution of (3) does tend to a steady limit, at least in the
absence of external forces, under quite general conditions.THE METHOD OF ARTIFICIAL COMPRESSIBILITY
This can be proved in the limiting case R 5 0, for problems

We introduce the auxiliary system of equations in which the velocities are prescribed at the boundary. By
linearity it is sufficient to consider the case of zero velocities

tui 1 Rj(uiuj) 5 2ip 1 Dui 1 Fi ,
(3)

at the boundary. From (3) the following equality can be ob-
tained:tr 1 juj 5 0, p 5 r/d.

An alternative form for the first of these equations is 1
2

t E
D
S1

2
uiui 1

r2

d D dV 5 2E
D
O
i, j

(iuj)2 dV.
tui 1 Rujjui 5 2ip 1 Dui 1 Fi . (39)

The integrands on both sides are positive; hence the uiWe shall call r the artificial density, d the artificial com-
tend to the limit ui 5 0, and p to a limit independent of t.pressibility, and p 5 r/d the artificial equation of state. t
From (3) one sees that this limit is independent of the xiis an auxiliary variable whose role is analogous to that of
and therefore is a constant.time in a compressible flow problem.

If, as the calculation progresses, the solution of (3) con-
THE FINITE-DIFFERENCE APPROXIMATIONverges to a steady solution, i.e. one which does not depend

on t, this solution is a steady solution of (1) and does The system (3) can be used with various difference
not depend on d; d appears as a disposable parameter, schemes. In the one adopted here, after some experimenta-
analogous to a relaxation parameter. The system (3) is not tion, the inertia and pressure terms are differenced ac-
a purely artificial construction, as can be seen by comparing cording to the leap-frog scheme, i.e., both time and space
it with the equations of motion of a compressible fluid with derivatives are replaced by central differences, and the
a small Mach number. viscous dissipation terms are differenced according to the

Equations (3) contain an artificial sound speed Dufort–Frankel pattern, in which a second derivative
such asc 5 1/d 1/2

2
1uand relative to that speed the artificial Mach number M is

is replaced by
M 5

R
c

max
D

SO u2
iD1/2

.

1
Dx2

1
(un

i11 1 un
i21 2 un11

i 2 un21
i ), un

i ; u(i Dx1 , n Dt).
It is clearly necessary that M , 1.
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Dt, Dx1 are, respectively, the ‘‘time’’- and space-variable in-
crements.

Equations (3) then become, in the two-dimensional case,
and in the absence of external forces,

un11
1(i, j) 2 un21

1(i, j) 5 2R
Dt

Dx1
((un

1(i11, j))2 2 (un
1(i21, j))2)

2 R
Dt

Dx2
(un

1(i, j11)un
2(i, j11) 2 un

1(i, j21)un
2(i, j21))

1
2 Dt
Dx2

1
(un

1(i11, j) 1 un
1(i21, j) 2 un11

1(i, j) 2 un21
1(i, j)) FIG. 1. Mesh near a boundary.
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Dx2
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1(i, j11) 1 un
1(i, j21) 2 un11

1(i, j) 2 un21
1(i, j))

When rn11 R rn21, this expression tends to
2

Dt
Dx1

1
d

(rn
i, j11 2 rn

i, j21),

2
1

Dx2
(un

2(i,2) 2 un
2(i,1)) 1

1
Dx1

(un
1(i11,1) 2 un

1(i21,1)) 5 0,
un11

2(i, j) 2 un21
2(i, j) 5 2R

Dt
Dx1

(un
1(i11, j)un

2(i11, j) 2 un
1(i21, j)un

2(i21, j)) (4)

2 R
Dt

Dx2
((un

2(i, j11))2 2 (un
2(i, j21))2) which approximates juj 5 0 on the boundary to order

Dx2 . A possible second-order approximation is
1

2 Dt
Dx2

1
(un

2(i11, j) 1 un
2(i21, j) 2 un11

2(i, j) 2 un21
2(i, j))

rn11
i,1 2 rn21

i,1 5 24
Dt

Dx2
(un

2(i,2) 2 un11
2(i,1)) 1

Dt
Dx2

(un
2(i,2) 2 un21

2(i,1))
1

2 Dt
Dx2

2
(un

2(i, j11) 1 un
2(i, j21) 2 un11

2(i, j) 2 un21
2(i, j))

2
Dt

Dx1
(un

1(i11,1) 2 un
1(i21,1)).

2
Dt

Dx2

1
d

(rn
i, j11 2 rn

i, j21),

rn11
i, j 2 rn21

i, j 5 2
Dt

Dx1
(u1(i11, j) 2 u1(i21, j)) One notices that these formulas contain three levels in

appearance only, for, since un11
i, j does not depend on un

i, j ,
the calculation splits into two unrelated calculations on2

Dt
Dx2

(u2(i, j11) 2 u2(i, j21)),
two intertwined meshes, one of which can be omitted. If
this is done, the nth and (n 1 1)st ‘‘time’’ levels can be

with considered as one level.
This scheme is stable for Dt small enough and is entirely

explicit. The presence of the dissipation terms suppressesrn
i, j ; r(i Dx1 , j Dx2 , n Dt), un

m(i, j) ; um(i Dx1 , j Dx2 , n Dt).
the instabilities to which the nondissipative leap-frog
scheme is susceptible. The known inaccuracy of the Du-

Similar expressions are used in the three-dimensional case. fort–Frankel scheme is of no relevance if only the asymp-
It is also necessary to approximate the equation totic steady solution is sought. In fact, if we consider the

Dufort–Frankel scheme,
tr 5 2juj

at the boundary. Suppose the boundary is the line x2 5 0, un11
i, j 2 un21

i, j 5 2
Dt

Dx2 (un
i11, j 1 un

i21, j 1 un
i, j11

(6)
represented by j 5 1 (see Fig. 1). A reasonable approxima-
tion is

1 un
i, j21 2 2un11

i, j 2 2un21
i, j ) 1 2 Dtf ,

rn11
i,1 2 rn21

i,1 5 22
Dt

Dx2
(un

2(i,2) 2 un
2(i,1))

(5)
which, for Dt 5 o(Dx) approximates the equation

2
Dt

Dx1
(un

1(i11,1) 2 un
1(i21,1)).

t u 5 Du 1 f, D ; 2
1 1 2

2 ,
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TABLE Ithen, if we write

Errors in Test Problem

g 5 8
Dt

Dx2 S1 1 4
Dt

Dx2D21

, (7) N E(u1) E(u2) E(p)

0 1. 0. 8.
100 0.1053 2.0 3 1022 7.04we see that (6) is nothing but the usual relaxation method
200 1.03 3 1022 1.5 3 1023 0.61for the solution of the 5-point Laplace difference equation,
300 7.7 3 1024 1.0 3 1024 0.22with relaxation parameter g. Returning to the general sys-
400 7.1 3 1025 1.7 3 1025 1.6 3 1022

tem (4), we see that, since that system is stable only for 500 6.5 3 1026 3.8 3 1026 8.6 3 1023

Dt small enough, g [defined by (7)] can take values only 600 1.2 3 1026 3.9 3 1027 7.8 3 1023

700 4.1 3 1027 1.2 3 1027 5.2 3 1024in an interval 0 # g # gc , 2. This is a familiar situation
800 7.2 3 1028 1.7 3 1028 1.3 3 1024(see, e.g., [1]).
900 2.3 3 1028 6.5 3 1029 3.6 3 1025

d plays a role similar to that of a relaxation coefficient.
1000 5.4 3 1029 1.5 3 1029 9.5 3 1026

Suppose the ui are such that, at some point the finite- 1100 1.5 3 1029 4.2 3 10210 2.5 3 1026

difference analog of (1b) is not satisfied; for example, 1200 3.9 3 10210 1.1 3 10210 6.6 3 1027

1300 1.0 3 10210 3. 3 10211 1.7 3 1027

1400 3. 3 10211 1. 3 10211 4.6 3 1028
1

Dx1
(un

1(i11, j) 2 un
1(i21, j)) 1

1
Dx2

(u2(i, j11) 2 u2(i, j21)) , 0 1500 1. 3 10211 less than 5 3 10212 1.2 3 1028

so that rn11
i, j . rn21

i, j . Then a ‘‘density’’ gradient is formed
which, through the terms 2i r/d in the momentum equa-

restricts the range of permissible values of these param-tions, will at the next step increase the velocity components
eters.pointing away from the point (i, j), thus increasing ri, j and

Finally, the accuracy of the finite-difference scheme canbringing the equation of continuity closer to being satisfied.
be improved in two-dimensional problems with the use ofThis sequence resembles a relaxation step.
staggered nets. This was not done here because our pro-A stability analysis of (4) shows that if the boundary
grams were written with three-dimensional problems inconditions consist of prescribed velocities, the system is
view. Slight modifications of the scheme were found neces-stable when
sary in problems involving singular points on the boundary.

A SIMPLE TEST PROBLEMmax
D

max
fi
H1

2
uSu 1

1
2

[S2 1 4c2(c 2
1 1 c 2

2 1 c 2
3)]1/2J# 1,

The system (1) with Fi 5 0 will now be solved in a square
domain D: 0 # x1 # 1, 0 # x2 # 1 with the boundary condi-where
tions

ci 5
Dt
Dxi

sin fi 0 # fi # 2f, i 5 1, 2, 3,
u1 5 4x2(1 2 x2), u2 5 0 on the lines x1 5 0, x1 5 1,

u1 5 u2 5 0 on the lines x2 5 0, x2 5 1.S 5 u1c1 1 u2c2 1 u3c3 , c 5 d 21/2.

If one ensures that the flow is subsonic with respect to the This is a simple problem, designed to test our method. The
domain D represents a segment of a channel. The referenceartificial sound speed, the above condition is satisfied when
velocity in the Reynolds number is the maximum velocity
in the channel, and the reference length d is the width of

Dt #
2

n1/2(1 1 51/2)
(min

i
Dxi)d 1/2, the channel. The steady solution is known analytically; it is

u1 5 4x2(1 2 x2), u2 5 0, p 5 C 2 x1 in D,where n is the number of space dimensions.
If other types of boundary conditions are imposed, e.g.,

if the derivatives of the velocities are prescribed at the where C is an arbitrary constant.
The equation of continuity is represented at the bound-boundary, one has to ensure that no instabilities arise due

to boundary effects. For details, see [3]. ary by the formula (5). The higher-accuracy formula was
also tried, and the results are very similar.In fact, we have at our disposal two parameters, Dt and

d, to be assigned values which make convergence to the In Table I results of a sample computation are presented.
The initial values for Eqs. (3)—or, if one prefers, the initialsteady solution as rapid as possible. The stability condition
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guess at the steady solution—are very unfavorable: u1 5 where k is the coefficient of thermal conductivity, g is the
force of gravitation, T the temperature, a the coefficientu2 5 0 everywhere except at the boundary, p 5 0 every-

where. These initial values are very unfavorable because u1 of thermal expansion of the fluid, and «i are the compo-
nents of the unit vector pointing upwards.is discontinuous, and therefore, in the first steps, tr be-

comes very large. Convergence is much faster when the ini- We write
tial values are smooth, or when they incorporate some ad-
vance knowledge regarding the final solution. These initial

u9i 5
d
v

ui , T 9 5
T 2 T1

T0 2 T1
, t9 5

v2

d
t,values were chosen to demonstrate the convergence of the

procedure even under unfavorable conditions. In Table I
the Reynolds number R is 1, d 5 0.00032; 19 mesh points x9i 5

xi

d
, p9 5

1
r0
Sd

vD2

p
were used in each space direction. N is the number of steps,
E(u1), E(u2), E(p) are the errors, i.e., the maxima of the
differences between the computed solution and the analytic and drop the primes. The equations become
solution given above. The constant C in the computed pres-
sure is determined from the values of p on the line x1 5 0.

tui 1 ujjui 5 2ip 1 Dui 2
R*
sq

(1 2 q(T 2 1))«i ,

(8)
It should be kept in mind that every step is very simple,

being entirely explicit.
tT 1 ujjT 5

1
s

DT, juj 5 0,The optimal value of d, dopt , has to be determined from
a preliminary test computation; it is independent of Dx.
Dt is determined from the relation where R* 5 [abgd 3(T0 2 T1)](kv)21 is the Rayleigh num-

ber, s 5 v/k the Prandtl number, and q 5 a(T0 2 T1). It
Dt 5 0.6 · Dx · d 1/2 is assumed that the upper and lower boundaries are rigid,

i.e., ui 5 0, i 5 1, 2, 3 on x3 5 0 and x3 5 1.
It is known from the linearized stability theory that, forso that the stability requirement is met. dopt is not sharply

R* , Rc , the state of rest is stable with respect to infinites-defined; for R 5 0, all values of d between 0.006 and 0.05
imal perturbations, where Rc 5 1707.62 is the critical Ray-lead to approximately the same rate of convergence.
leigh number (see [2]). This is taken to mean that forThe channel flow problem was solved for values of R
R* , Rc no convective motion can be maintained in thevarying between 0 and 1000. The method converged for
layer. When R* 5 Rc steady infinitesimal convection canall these values, although convergence was very slow for
first appear; the various field quantities are given bythe higher values of R. dopt decreases as R increases.

The problem in this section is particularly simple; the
u3 5 W(x3)f,analytic steady solution is known, and it satisfies the finite-

difference equations exactly. The method was of course
u1 5

1
a2 W(x3)1f, u2 5

1
a2 W(x3)2f, (9)applied to less trivial problems, one of which will now

be described.
T 5 T(x3)f,

THERMAL CONVECTION IN A FLUID
where f 5 f(x1 , x2) determines the horizontal planformLAYER HEATED FROM BELOW. THE
of the motion and satisfiesTWO-DIMENSIONAL CASE

(2
1 1 2

2)f 5 2a2f.Suppose a plane layer of fluid, of thickness d and infinite
lateral extent, in the field of gravity, is heated from below.
The lower boundary x3 5 0 is maintained at a temperature W(x3), T(x3) are certain fully determined functions, a 5
T0 , the upper boundary x3 5 d at a temperature T1 , with 3.117, and the amplitude is of course undetermined.
T0 2 T1 positive. (x3 is the vertical coordinate.) The warmer In two-dimensional convection u1 5 0 and the motion
fluid at the bottom of the layer expands and tends to move is independent of x1 . f has then the form
upwards; this tendency is inhibited by the viscous stresses.

The equations governing the fluid motions are, in the f 5 cos ax2Boussinesq approximation (see [2, 3]),

when R* 5 Rc . The motion is periodic in x2 with period
tui 1 ujjui 5 2

1
r0

ip 1 v Dui 2 g(1 2 a(T 2 T0))«i , 2f/a. In this section we shall confine ourselves to two-
dimensional problems.

When R* . Rc it is known from experiment that steadytT 1 ujjT 5 k DT, juj 5 0,
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TABLE II which would have occurred if no convective motion were
present; in our dimensionless variables it is simplyNu as a Function of R*/Rc

R*/Rc M 5 30, N 5 26 M 5 30, N 5 28
Nu 5

a
2f

E2f/a

0
(su3T 2 3T) dx2

2 1.754 1.759
3 2.093 2.099
4 2.309 2.317 and does not depend on x3 when the convection is steady.
5 2.478 2.482 For R* # Rc , Nu 5 1. It can be seen from (8) that the
6 2.608 2.620 only physical parameters in the problem are R* and s ; the7 2.728 2.735

solution does not depend on q, except inasmuch as R*8 2.833 2.841
depends on q. Changing q in (8) simply implies a change9 2.927 2.936

10 3.008 3.021 in the definition of the pressure. We shall study the depen-
11 3.086 3.098 dence of Nu on R* and s.
12 3.161 3.172 The auxiliary system used for finding steady solutions13 3.232 3.241

of (8) is

tui 1 ujjui 5 2ip 1 Dui 2
R*
sq

(1 2 q(T 2 1))«i ,

(10)convection sets in, at least when R* is not too large. We shall
assume that the motion remains periodic, with a period

tT 1 ujjT 5
1
s

DT, tr 5 2jujequal to the period of the first unstable mode (9) of the lin-
earized theory. There is no difficulty in trying other periods.
The periodicity assumption is physically very reasonable. with the artificial equation of state, either
We are interested in determining the amplitude of the mo-
tions, and more specifically, the magnitude of the heat trans-
fer, measured by the dimensionless Nusselt number Nu. Nu p 5

R*
sqd

(r 2 1 2 q(T 2 1))
is the ratio of the total heat transfer to the heat transfer

FIG. 2. Nu as a function of R*/Rc .
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TABLE III steady solution was found to be one in which the tempera-
ture alone is perturbed, by adding to it a multiple of theNu as a Function of s
temperature field of the first unstable mode of the linear-

s M 5 30, N 5 26 M 5 30, N 5 28 ized theory.
The steady state is assumed to have been reached when

20.0 2.67 2.68
two conditions are satisfied: (a) The Nusselt number evalu-6.8 2.68 2.69
ated at the lower boundary has varied by less than 0.2%1.0 2.73 2.73

0.2 2.68 2.68 over 100 steps, and (b) the Nusselt number evaluated at
the lower boundary and the Nusselt number evaluated at
midlayer differ by less than 0.2%.

Table II displays the variation of Nu with R* for s 5 1
or (see also Fig. 2). M is the number of mesh points in the

x2 direction, and N the number of mesh points in the x3
p 5 (R*/sqd)r.

The artificial sound speed c is in both cases

c 5 (R/sqd)1/2

d is the artificial compressibility. The results are not af-
fected by which equation of state is used. It should be
noted that t in (10) does not represent real time.

The finite-difference scheme is a straightforward exten-
sion of the scheme presented before, i.e., a combined leap-
frog and Dufort–Frankel scheme. It was found that the
steady state is reached with less computing effort when
the nonlinear terms are differenced in a nonconservative
form, as in (39). It was also observed that the computation
proceeds with greatest efficiency when Dt is as large as
possible, and hence, in view of the stability condition, when
c is as small as possible. Since the artificial Mach number
M has to be smaller than 1, q and d were chosen in practice
so as to have M p 0.5–0.8, thus allowing for possible veloc-
ity overshoots. A rough trial computation was usually made
for every class of problems to determine the order of mag-
nitude of M.

For every value of R* and s it is necessary to determine
how many mesh points are needed to produce an accurate
value of Nu. Serious errors may ensue when too few points
are used. Every series of calculations was therefore per-
formed at least twice, and the results accepted only if they
had been approximately reproduced by two different calcu-
lations with differing meshes. As is to be expected, the
number of points required increases with the Rayleigh
number.

The initial data for the various problems consist of a
zero-order solution on which a perturbation is imposed.
The zero-order solution is

u2 5 u3 5 0, T 5 1 2 x3 ,

with r and p obtained by solving numerically the finite-
difference equations in the absence of motion. The pertur-

FIG. 3. (a) isotherms; (b) stream lines.bation which produces the fastest convergence to the
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direction. These results are in good agreement with some number of ways, with arbitrary amplitudes and phases. It
is reasonable to assume that the cell patterns are made upresults obtained by G. Veronis and P. Schneck [5].

Table III gives an indication about the way Nu varies of polygons whose union covers the (x1 , x2)-plane; possible
cell shapes are hexagons, rectangles, and rolls (i.e., two-with s, for R*/Rc 5 7. It is seen that Nu does not vary

very much with s, as already discovered by Veronis [6] dimensional convection cells). For R* . Rc , the nonlinear
terms in the equations determine which cell pattern actu-with another type of boundary conditions.

For the sake of completeness, typical isotherm and ally occurs.
The numerical method described in this article is applica-stream line configurations are represented in Figs. 3a and

b. They were obtained with R*/Rc 5 7, s 5 1, M 5 30, N 5 ble; some computational results were described in [3]. The
conclusion to be drawn from them is that the preferred28. The stream function c was obtained from the computed

velocities and affords a further check on the results, since cellular mode is the roll, but that even this preferred mode
is subject to instabilities. A search for possible values ofthe conditions
R, s, and a for which such instabilities do not occur will
be described elsewhere.3c 5 0, 2c 5 0
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